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Abstract

Purpose of the article: While using asymmetric risk-return measures an important role is played by selection 
of the investor‘s required or threshold rate of return. The scientific literature usually states that every investor 
should define this rate according to their degree of risk aversion. In this paper, it is attempted to look at 
the problem from a different perspective – empirical research is aimed at determining the influence of the 
threshold rate of return on the portfolio characteristics.
Methodology/methods: In order to determine the threshold rate of return a stochastic dominance criterion was 
used. The results are verified using the commonly applied method of backtesting.
Scientific aim: The aim of this paper is to propose a method allowing selecting the threshold rate of return 
reliably and objectively.
Findings: Empirical research confirms that stochastic dominance criteria can be successfully applied to 
determine the rate of return preferred by the investor.
Conclusions: A risk-free investment rate or simply a zero rate of return commonly used in practice is often 
justified neither by theoretical nor empirical studies. This work suggests determining the threshold rate of 
return by applying the stochastic dominance criterion.

Keywords: Omega function, portfolio optimization, threshold return, stochastic dominance, differential 
evolution (DE)

JEL Classification: D81, G11, C61



Renaldas Vilkancas: Omega-optimized Portfolios: Applying Stochastic Dominance Criterion for the Selection of the Threshold Return

57

Introduction

This work extends and complements the author‘s 
previous study aimed at researching Omega-opti-
mized portfolios (Vilkancas, 2014). Portfolio opti-
mization with respect to Omega ratio proposed by 
Keating and Shadwick (2002) has proved to be very 
successful, but the question of what criteria should 
be referred to while selecting threshold or minimum 
desired rate of return remains unanswered. During 
the previous study, obtained out of sample returns in-
dicated that when the threshold level of return varied 
within the range from 1 to 2 percent (monthly data), 
the returns and the final value of Omega-optimized 
portfolios increased significantly and exceeded all 
the competing strategies of portfolio performance. 
The result obtained is rather important, as in practice 
the threshold rate of return is generally comparable 
to the risk-free investment rate or simply a zero. Ho-
wever, in practical terms, this result is still not satis-
factory for several reasons: i) an investor performing 
portfolio optimization at the beginning of each port-
folio formation or rebalancing must choose one spe-
cific “point” of threshold return; ii) the selected 1–2 
percent range of threshold return is rather arbitrary; 
there is no guarantee that selection of another data 
sample, or a different period, would not result in lo-
wer or higher range limits; iii) finally, based on the 
traditional mean-variance criterion, higher portfolio 
return is associated with higher risk (again, within a 
certain range, beyond which only the risk begins to 
grow) and making a decision, the investor is requi-
red to use the utility function.

This article suggests a possible solution to the 
problem – to apply stochastic dominance criterion 
while selecting the threshold rate of return. The 
essence of this method is that at the initial stage of 
portfolio formation a dominant portfolio is selected 
from a set of portfolios optimized with respect to 
Omega function, which were generated by using di-
fferent threshold level of return, and the weights of 
this portfolio are used to calculate and evaluate the 
performance of the next period. Dominant portfo-
lios were identified using Anderson (1996) stochas-
tic dominance methodology. To the author’s best 
knowledge, this method has not been used previous-
ly in order to determine the threshold rate of return 
and thus select investment portfolios. After model 
backtesting with historical data, the results basically 
confirmed the expectation that this method can be 
successfully applied in selecting the threshold rate 
of return.

1.  Literature review

Investment decisions are commonly relied on re-
lative risk-reward measures. In the classical mo-
del by Markowitz this measure refers to the ratio 
of mean for returns and variance, which, in order 
to avoid the drawbacks associated with dispersion, 
was later supplemented by a considerable number of 
other “modern” measures, such as Sortino, Omega, 
Kappa and other similar ratios. An alternative app-
roach, which is deeply rooted in economic theory, 
suggests that while making an investment decision 
a rational investor explicitly optimizes an expected 
utility function, i.e. the utility. The origins of the 
Expected Utility Theory are associated with the St. 
Petersburg paradox described by Bernoulli in 1738, 
the outcome of which is that the appropriate value of 
a lottery or an uncertain decision is not the expected 
value but the expected utility of the gain. In 1947 
Von Neumann and Morgenstern formulated four ra-
tional behavior rules (axioms) to ensure the existen-
ce of utility function, which can be used to express 
the assessment of individual risk. According to the 
Expected Utility Theory, by choosing investment 
portfolio, the investors maximize the expected uti-
lity. Usually there are commonly recognized two 
characteristics of the utility function: i) utility func-
tion is strictly increasing, i.e. the investor’s utility 
increases together with increasing wealth; ii) utility 
function is concave. The concavity feature is very 
important – it describes the tendency of the investor 
to avoid risks. The only essential condition for this 
feature is a declining marginal utility of wealth; ho-
wever, if we replace oranges or potatoes with wealth 
or money, the concept of declining marginal utili-
ty does not appear so easy to perceive, as it is not 
entirely clear, why institutional investors‘ marginal 
utility of wealth should decline.

Although being the one which has helped to re-
solve many paradoxes in economic theory, the 
utility theory was not very “productive” in finan-
ce and quickly gave way to the portfolio theory 
and associated risk-reward measures proposed by 
Markowitz. As evidenced by Allais and Ellsberg’s 
paradoxes, the utility theory is not perfect, even in 
terms of theory; however, the biggest problem of the 
expected utility optimization lies within the proper 
selection of utility function – every investor may 
possess a subjective utility and, accordingly, a diffe-
rent optimal investment portfolio. The idea of “ob-
jective” or “universal” risk-reward measures greatly 
simplifies the idea of investment selection, but “uni-
versal” risk-reward measurement concept also does 
not escape criticism. In case of a normal investment 
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distribution, portfolio theory by Markowitz is correct, 
but where returns on investment are not symmetri-
cal, the criterion of Mean-Variance ratio can lead to 
wrong decisions. For example, it is well known that 
the Sharpe ratio widely used in financial sector tends 
to “rank” investments incorrectly where the returns 
have a positive asymmetry, or where the numerator 
of this ratio is negative. A range of other risk-reward 
measures offered by scientists partially help to solve 
problems when the returns on investment are cha-
racterized by asymmetry and heavy tails, but a fun-
damental problem of rational investment selection 
under indetermination remains relevant.

The search for solutions to problems forced to 
reconsider the models of utility, risks and rational 
investor behavior. Although a very diverse per-
ception of utility and risk usually leads to a failu-
re while formulating a universal “recipe” of how 
investors should maximize the expected utility, a 
concept called Stochastic Dominance (SD) allows 
ranking investment opportunities according to their 
attractiveness without knowing specific value of the 
utility function and based solely on the properties 
of utility function characterizing investors‘ attitudes 
to risk. The main idea of SD is that investors pre-
fer investment with low probabilities of negative or 
small returns and high probabilities of positive or 
large returns. In practice, most commonly used are 
the first and second degree stochastic dominance ru-
les (respectively referred to as FSD and SSD).

Given the two alternatives A and B, the probabi-
lities of each of which are defined by distribution 
function CDF, A dominates B in terms of FSD only 
when distribution function A is always below and 
to the right of distribution function B, i.e. Fa(x)≤-
Fb(x), ∀x. A sufficient condition to ensure the first 
degree SD, is an increasing investor‘s utility func-
tion (U' >0), i.e. the investor is rational and prefers 
more wealth to less. This dominance feature is quite 
obvious, yet rare in practice – the first degree sto-
chastically dominant portfolio would normally re-
sult in arbitrage opportunity. The second degree SD 
means that the investor is rational and tends to avoid 
risks – his utility function is increasing and concave, 
i.e. U‘(x)>0 and U‘‘<0. Alternative A dominates al-
ternative B, where

 ( ) ( ) ,
x x

Fa x dx Fb x dx x
−∞ −∞

≤ ∀∫ ∫ . (1)

The advantage of SD, compared with other risk-
-reward measures, is that the use of the SD criterion 
does not need to rely on simplified assumptions about 
the distributions of assessed processes; besides, the 
assessment of the alternatives includes all available 

information of distribution density function, not just 
its individual moments. The disadvantage of SD – 
determining dominance is not a trivial task. Popu-
lation distribution curves can dominate, but those of 
sample – cannot, or vice versa. In order to determine 
dominance statistical tests are applied: McFadden 
(1989), Davidson, Duclos (2000), Barrett, Donald 
(2003), Linton, Maasoumi and Whang (2005). Tho-
se tests differ from each other in the way the null 
hypothesis is formulated (whether the hypothesis 
of dominance or non-dominance is proposed), the 
ability of a test “to deal” with correlated samples 
(this is an important moment when we are working 
with financial time series) and methodologies of 
determining critical test values. The second degree 
stochastic dominance criterion may not be suffici-
ent to determine the attractiveness of potential in-
vestments, and one may need to use a higher degree 
of dominance or even additional subjective criteria 
of investment “discrimination”. Finally, even non-
-dominant securities may be useful in the process 
of investment portfolio formation. Investment port-
folio formation allows splitting and thus reducing 
the risk and the effect of risk diversification may be 
stronger than the one of the stochastic dominance, 
therefore, in most cases the non-dominant securities 
should not be immediately refused as not suitable 
(Post 2003, Kuosmanen, 2004).

2.  The Omega Ratio

The Omega ratio suggested by Keating and 
Shadwick (2002) is equivalent to the total distributi-
on as it evaluates all higher-order moments. Thus, it 
is not necessary to rely on assumptions about inves-
tors’ risk tolerance and their utility functions when 
using it, and hence, according to researchers, this is 
a “universal ratio” that helps with an objective asse-
ssment of the performance of investments.

The Omega ratio is described as:

 ( )
( )( )

( )

max max

min min

1
R R

R R

F x dx BCU

F x dx LAB

τ τ
τ τ

τ

−

Ω = =
∫ ∫

∫ ∫
, (2)

where:
τ	 the threshold;
Rmin, Rmax the minimum and maximum values of 

returns respectively.

When τ is closer to the Rmin value, the BCU 
area is larger than that of the LAB and the Omega 
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value is high, and vice versa. While calculating the 
Omega, the threshold level of return is taken into 
account, in respect of which the result is conside-
red as gain or loss; thus, if τ is seen as the required 
rate of return, the Omega ratio shows at what extent 
the obtained result exceeds the expectations of the 
investor. Accordingly, a higher Omega ratio means 
higher performance, i.e. return.

Although Keating and Shadwick introduced the 
Omega as a “universal measure of efficiency”, which 
fully characterizes return-risk distribution and is in-
tuitive, easy to understand and calculate, they soon 
recognized themselves, that in order to get full in-
formation about return-risk distribution, the Omega 
function should be assessed not at a single point τ 
of the threshold return but within the whole range. 
Later, the authors’ position has become even more 
critical: according to them, “a function estimated at 
only one point can be completely misleading”. Alt-
hough an interpretation of an estimate of the Omega 
function obtained at one point of the threshold return 
– “more is better” – is really very simple, interpre-
ting the estimates obtained within the range of the 
threshold return is far from simple.

The Omega function is strictly descending: where 
τ is lower than the mean of distribution μ, the Ome-
ga is higher than one (i.e. Ω>1 where τ<μ); whe-
re τ is higher than the mean of distribution μ, the 

Omega is lower than one (i.e. Ω<1, where τ>μ) and 
it is equal to one when τ=μ. It is intuitively under-
standable that the higher is the threshold return, the 
lower is the opportunity to achieve it, and therefore, 
an increasing threshold results into the value of the 
Omega coming to 0. Furthermore, the situation be-
comes complicated.

The level of investment risk depends on the cha-
racteristics of the Omega function (Figure 1): the 
steeper is the plot, the lower is the risk, i.e. a lo-
wer probability of “extreme” return variations, and 
accordingly, the flatter is the plot, the higher the risk.

Figure 1 represents Omega plots for UnitedHealth 
Group (UNH), Exxon Mobil Corporation (XOM) 
and Verizon Communications Inc. (VZ) where thre-
shold returns ranges from 0 percent up to 5 percent. 
The figure shows that the UNH is more attractive 
than the XOM or VZ not taking into account the se-
lected threshold; however, the attractiveness of the 
XOM, compared to VZ, will depend on the selected 
marginal return. Therefore, assessing the attractive-
ness of assets relying on a single selected threshold 
value is dangerous – assessment within the whole 
range is required. The plot of the Omega function 
obtained by changing threshold values actually 
allows a more efficient assessment of investment 
attractiveness, but there is a legitimate question in 
what way the ratio is better than a direct comparison 

Figure 1.  Omega plots for UNH, XOM and VZ. Source: Created by the author.
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of the distributions of returns, i.e. investment asse-
ssment using stochastic dominance criteria (Frey 
2009).

Despite the warnings of Omega deficiencies while 
taking “point” estimates of investments with respect 
to this function, the issue of threshold selection is 
not analyzed more explicitly in literature thus often 
simply recognizing it is not clear how this threshold 
should be specified, or indicating that the threshold 
should be specified depending on the risk-return pre-
ferences of each investor (Mausser et al., 2006). In 
practice, the threshold value is generally equated to 
the rate of risk-free investments, the average expec-
ted return or simply a zero (Gilli et al., 2011).

3.   Optimization with Respect to the Omega 
Function

Performing the Omega-optimization of a portfolio, 
each threshold return value is attributed with posi-
tional weight, which maximizes the ratio of the ex-
pected gain and loss. Formally the problem of Ome-
ga optimization can be written as

 
1

max ( , ); 1; 
N

s i l i u
i

x x x x xτ
=

Ω = ≤ ≤∑  (3)

where:
xl , xu are lower and upper bounds on weights. 

When choosing an interval of the threshold return 
i.e. minτ and maxτ, within which the Omega func-
tion will be optimized, the maximum threshold re-
turn should not exceed the maximum historical or 
simulated yield of portfolio securities. Obviously, 
ex post portfolio returns can never be higher than 
the returns of the component securities. In case of a 
higher threshold, meta-heuristic optimization algo-
rithms, as opposed to traditional exact optimization 
algorithms, can actually give the solution, but it is 
obvious that such solution would not make logical 
sense (Shaw 2011).

The Omega ratio is easy to use in assessing past 
performance, but this function is non-convex and 
may have plenty of local minimums; thus, portfo-
lio optimization using this function is quite tricky. 
Mausser, Saunders and Seco (2006) proposed a me-
thod that, under certain conditions, allows solving 

Table 1.  Review of studies on portfolio optimization with respect to the Omega function.

Authors Brief description and main results
Avouyi-Dovi et al., 2004 Data: index weekly returns of US, British and German stock markets over the period 

1974–2003. Optimization method: threshold acceptance. Results: general considerations 
that the Omega can be used for optimizing investment portfolios.

Kane et al., 2009 Data: artificial data – three series of stock returns comprising the 50-day period. 
Optimization method: the Nelder-Mead method and MCS global minimum algorithm. 
Results: general considerations that Omega portfolios differ from minimum risk and 
minimum loss portfolios.

Gilli, Schumann 2010 Data: one-year data covering several hundred of European companies. Optimization 
method: threshold acceptance.
Results: highlights that the main objective is to evaluate the optimization algorithm rather 
than portfolio construction strategies.

Gilli et al., 2011 Data: data on stock return from a few hundred largest European companies covering the 
period 1998–2008.
Optimization method: threshold acceptance.
Description: the optimization of the 130/30 portfolio (i.e. the portfolio allowing selling 
borrowed securities) and the portfolio that prohibits “borrowed positions” performing 
classical mean, variance and Omega-optimization.
Results: classical and Omega optimization results are not directly compared by the authors, 
indirectly – the Omega-optimized portfolio was not superior.

Gilli, Schumann, 2011 Data: Dow Jones Euro STOXX index companies. Optimization method: threshold 
acceptance. Results: risk minimization, in contrast to return maximization, leads to good 
results obtained beyond the boundaries of the prediction sample. An additional parameter of 
the reward function makes only marginal improvements.

Hentati-Kaffel, Prigent, 2012 Description: Omega and Omega-Sharpe optimization of plain
vanilla structured products (stocks and the option portfolio as
well as risk-free investment). Results: the payment function of the structured products is 
non-convex.

Source: created by the author.
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the problem of the Omega-optimized portfolio using 
linear programming techniques; however, generally 
this method is not appropriate. In other cases, the 
portfolio is optimized using heuristic optimization 
(Gilli, Schumann 2010) or other techniques of glo-
bal optimization (Kane et al., 2009).

Return series to be used in portfolio optimization 
can be obtained in two ways: by taking historical 
data or applying simulation techniques. As various 
studies show, relying solely on historical data leads 
to encountering of the so-called model over-fitting, 
i.e., the model perfectly fits to the period of con-
struction or testing sampling but has little predictive 
power beyond this period. A theoretically better me-
thod is to “develop” returns using simulation tech-
niques, but in fact, a process generating returns is 
not known (or even does not exist); thus, historical 
data are often used hoping that the past scenarios 
will remain relevant in the future or at least for some 
time.

In this paper, the optimization has been carried 
out using historical data and applying a genetic algo-
rithm for differential evolution implemented in the 
R package DEoptim (Ardia et al., 2011).

Despite the fact that the Omega ratio has attracted 
much attention in both academic and financial sec-
tors, there are not many studies that could answer to 
the question of whether this ratio is somehow better 
than classic techniques for portfolio optimization or 
other strategies based on portfolio construction me-
thods. One of the reasons – Omega-optimization are 
quite complex, and is itself an object of a number of 
studies. A review of the conducted studies is presen-
ted in Table 1.

4.  Material and methods

The study uses four data sets from three stock mar-
kets: monthly returns of all constituents of the DJIA 
index for the period from 30/01/1998 to 31/12/2013 
(a total of 30 stocks and 192 periods), monthly re-
turns of 25 stocks belonging to the DAX30 for the 
period from 31/01/2002 to 31/12/2013 (stocks with 
insufficient price history where excluded) and mon-
thly returns of 25 stocks belonging to the CAC40 
for the same period from 31/01/2002 to 31/12/2013, 
weekly returns of 50 stocks belonging to the EURO 
STOXX 50 index for the period from 04/01/2002 to 
31/12/2013.

The performance of the Omega portfolios are 
compared with the performance of the portfolios 
constructed using other optimization techniques. A 
total of eight competing benchmark portfolios are 

compared within this paper: the classic minimum 
variance portfolio and the tangency or maximum 
Sharpe ratio portfolio (respectively C.MV and 
C.TG), tangency portfolios optimized using uni-
form correlation and “shrunk” covariance matrices 
proposed by Ledoit and Wolf (respectively LWCC.
TG and LW1F.TG), minimum conditional value-at-
-risk and highest return-risk CVaR portfolios (min-
CVaR and maxCVaR), the equal weighted portfolio 
(EQW), the equal risk portfolio (EQRC) proposed 
by Maillard et al. (2010).

The performance of the selected strategies, were 
evaluated using a moving sample window method 
often applied in scientific studies (DeMiguel et al., 
2009; Gilli et al., 2011). The choice of the method 
is usually based on a well-known heteroskedasti-
city feature of financial data series. Primarily, the 
duration of one testing period is selected; this pa-
per accepts M = 36 months (or 104 weeks). Based 
on the return series of the first testing period, the 
parameters required for implementing a particular 
strategy are obtained and then used for calculating 
optimal portfolio weights that are used for calcula-
ting portfolio returns for the next period, i.e. M+1. 
The process is continued with an addition of a new 
period and the exclusion of one of the earliest peri-
ods until the end of the entire data period is reached. 
As a result of this backtesting using a moving win-
dow approach, a series of T-M monthly (or week-
ly) out-of-sample portfolio returns is obtained, i.e. 
calculated using data that was not included into a 
data sample during portfolio optimization. The pro-
cedure is applied to each testing strategy and each 
stock market data set.

Another important concern is how often the in-
vestment portfolio will be reallocated. Fund man-
agers usually reallocate portfolio positions either 
in accordance with a specified frequency or when 
portfolio weights “deviate” from the specified allo-
wable threshold or, more commonly, over a certain 
period if, at that time, weights are above the spe-
cified “threshold”. Such portfolio management can 
be called tactical, as for certain tactical objectives, 
e.g. reducing transaction costs it is allowed to devi-
ate from the basic strategy – optimal weights. The 
frequency of portfolio reallocation can be also ad-
justed for other reasons such as optimizing the taxes 
paid. Based on the results of the author’s previous 
study on the Omega portfolio, a half-year frequency 
for reallocating weights was selected for the present 
study, which is empirically proven as a good com-
promise in order not to deviate significantly from 
the selected strategy and the aim to reduce turnover 
costs (Vilkancas, 2014).
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The characteristics of the Omega portfolios were 
assessed with threshold value τ varying in the range 
from 0 to 5 percent where range step is equal to 
0.001% (for brevity, the detailed results are omitted 
and only cumulative net returns after expenses incu-
rred due to transaction costs are presented in Figures 
2 through 5 below).

And finally, at the end of each testing period three 
dominant portfolios where selected: the first portfo-
lio selected from a set of the Omega portfolios ob-
tained within the threshold rate τ varying from 0 to 1 
percent referred to as “SD L0-10”, the second from 
a set of portfolios within the threshold rate τ varying 
from 1 to 2 percent referred to as “SD L10-20”, and 
the third ”SD L20-30” portfolio from the a set of 
portfolios within the threshold rate τ varying from 
2 to 3 percent. In most cases, attempts to move the 
threshold range even higher proved unsuccessful, as 
such high threshold rates simply exceeded in sample 
returns of the underlying stocks. Dominant portfo-
lios were identified using Anderson (1996) test for 
second degree stochastic dominance Vinod (2004). 
Although a stochastic dominance test by Davidson, 
Duclos (2000) is more recent and different authors 
have recognized it as one of the most effective, in 
this experiment, the most important evaluation crite-
rion is the out of sample performance of the selected 
portfolios.

All tested portfolios were assessed considering 
various aspects, including the overall return, risk and 
portfolio turnover required for a particular strategy, 
portfolio concentration and net return received after 
the deduction of costs and incurred in the reallocati-
on of portfolio weights. In order to assess portfolio 
performance, a total of 14 different indicators were 

used. In addition to conventional risk indicators – 
standard variance (referred to as AnnSD) and the 
Sharpe ratio (AnnSR), the paper also presents the 
maximum drawdown and the average drawdown ra-
tes (Max.DD and Avg.DD) as well as maximum and 
minimum annual returns received over the period. 
While assessing portfolio turnover, the average an-
nual turnover and the total, i.e. covering the whole 
period, turnover are given (Ann.Turn and Tot.Turn). 
In order to assess portfolio concentration the Gini 
coefficient is used. The coefficient ranges from 0 to 
1. If the value of the Gini coefficient equals to 1, this 
shows complete portfolio concentration (portfolio 
consists of only one position), and the Gini coeffici-
ent for a well-diversified portfolio of equal weights 
equals to 0. The table of the obtained results includes 
the average values of the Gini coefficient obtained 
during the entire period of study. Finally, it provides 
the net annual returns of the portfolio and the net 
value (NetCumRet) received after the deduction of 
proportional turnover charges of 1 percent per 100 
percent of portfolio turnover as well as the Sharpe 
ratio estimated using net returns (NetAnn.SR).

5.  Results and discussion

The results are summarized in Tables 2–4 and in Fi-
gures 2–5.

Figures 2–5 show that the Omega-optimized 
portfolios, at a certain level of the threshold return, 
outperform, in absolute terms, all other competing 
portfolios. Moreover, Omega-optimized portfolios, 
are characterized by the stability of the results, while 
the list of the other “leaders” seems to have changed 

Table 2.  The performance of the Omega portfolios and benchmark portfolios of DJIA index stocks where weights are 
reallocated every six months.

Cum
Ret

Ann
Ret

Ann
SD

Max
DD

Avg
DD

Ann
Turn

Tot
Turn

Gini
AV

Net
AnnRet

NetAnn
SH

Net
CumRet UPR

EQW 2.753 8.10% 15.27% 45.71% 7.25% 19% 248% 4% 7.91% 0.518 2.685 0.669
C.MV 1.684 4.09% 11.99% 37.72% 5.92% 111% 1442% 85% 2.98% 0.248 1.455 0.723
C.TG 2.677 7.87% 13.33% 41.13% 7.50% 143% 1857% 90% 6.44% 0.483 2.219 0.699
LWCC.TG 3.841 10.91% 13.25% 34.36% 5.92% 138% 1795% 90% 9.53% 0.719 3.211 0.699
LW1F.TG 3.116 9.14% 12.85% 36.87% 6.08% 137% 1778% 87% 7.77% 0.604 2.606 0.697
minCVaR 2.148 6.06% 13.23% 38.89% 6.82% 189% 2452% 87% 4.17% 0.315 1.676 0.715
maxCVaR 2.459 7.17% 14.25% 38.90% 7.70% 166% 2155% 91% 5.51% 0.387 1.975 0.665
EQRC 2.527 7.39% 13.84% 43.89% 6.62% 31% 404% 23% 7.08% 0.512 2.427 0.627
SD(L0-10) 3.427 9.94% 14.21% 34.04% 7.36% 155% 2010% 92% 8.39% 0.590 2.802 0.717
SD(L10-20) 4.615 12.48% 15.07% 28.27% 8.29% 163% 2122% 92% 10.85% 0.720 3.734 0.796
SD(L20-30) 2.138 6.02% 20.94% 52.38% 19.15% 218% 2837% 89% 3.84% 0.183 1.608 0.607

Source: Created by the author.
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Figure 2.  The growth in value of 1$ invested in the DJIA index stocks where weights are reallocated every six months. 
Source: Created by the author.

Table 3.  The performance of the Omega portfolios and benchmark portfolios of FT100 index stocks where weights are 
reallocated every six months.

Cum 
RET

Ann 
RET

Ann 
SD

Max 
DD

Avg 
DD

Ann. 
Turn

Tot 
Turn

Gini 
AV

Net 
AnnRet

NetAnn 
SH

Net 
CumRet UPR

EQW 3.032 11.14% 14.29% 37.09% 5.76% 21% 226% 5% 10.94% 0.765 2.965 0.370
C.MV 2.036 7.00% 12.11% 27.86% 4.45% 118% 1303% 83% 5.82% 0.481 1.786 0.220
C.TG 3.467 12.57% 15.29% 36.98% 6.60% 144% 1580% 89% 11.14% 0.728 2.960 0.314
LWCC.TG 3.150 11.55% 17.25% 44.99% 6.97% 151% 1658% 88% 10.04% 0.582 2.670 0.252
LW1F.TG 2.757 10.14% 15.82% 44.37% 7.12% 143% 1569% 85% 8.71% 0.551 2.356 0.285
minCVaR 2.936 10.80% 13.85% 26.00% 5.11% 182% 1998% 89% 8.99% 0.649 2.403 0.372
maxCVaR 4.289 14.87% 16.47% 35.76% 6.24% 194% 2130% 93% 12.94% 0.786 3.461 0.351
EQRC 2.637 9.67% 12.57% 34.17% 4.50% 29% 322% 24% 9.38% 0.746 2.554 0.370
SD(L0-10) 3.766 13.46% 17.78% 39.60% 7.12% 176% 1936% 89% 11.70% 0.658 3.103 Inf
SD(L10-20) 3.964 14.02% 21.21% 45.67% 8.07% 184% 2021% 91% 12.18% 0.574 3.240 Inf
SD(L20-30) 3.909 13.86% 25.24% 49.88% 9.62% 196% 2157% 90% 11.90% 0.472 3.143 Inf

Source: Created by the author.

Table 4.  The performance of the Omega portfolios and benchmark portfolios of EURO STOXX 50 index stocks where 
weights are reallocated every six months.

Cum 
RET

Ann 
RET

Ann 
SD

Max 
DD

Avg 
DD

Ann. 
Turn

Tot 
Turn

Gini 
AV

Net 
AnnRet

NetAnn 
SH

Net 
CumRet UPR

EQW 1.672 5.27% 17.40% 53.79% 9.83% 20% 195% 4% 5.08% 0.292 1.640 0.151
C.MV 2.007 7.21% 14.14% 52.27% 9.07% 124% 1242% 90% 5.97% 0.423 1.771 0.187
C.TG 2.404 9.17% 15.45% 54.59% 9.24% 187% 1873% 94% 7.30% 0.472 1.995 0.214
LWCC.TG 2.402 9.16% 15.49% 53.49% 8.05% 191% 1908% 94% 7.25% 0.468 1.987 0.216
LW1F.TG 2.412 9.20% 15.36% 56.09% 10.27% 177% 1770% 93% 7.43% 0.484 2.022 0.218
minCVaR 1.640 5.07% 14.46% 47.32% 7.80% 190% 1898% 92% 3.17% 0.219 1.356 0.116
maxCVaR 2.581 9.94% 16.55% 53.05% 9.08% 238% 2381% 95% 7.56% 0.457 2.038 0.209
EQRC 1.804 6.08% 15.94% 51.50% 8.15% 31% 311% 19% 5.77% 0.362 1.749 0.174
SD(L0-10) 2.812 10.89% 15.34% 50.62% 9.11% 197% 1969% 84% 8.92% 0.582 2.314 0.264
SD(L10-20) 1.475 3.96% 22.10% 60.08% 10.69% 174% 1740% 78% 2.22% 0.101 1.241 0.086
SD(L20-30) 1.162 1.51% 25.15% 63.48% 12.85% 168% 1679% 75% –0.17% –0.007 0.982 0.049

Source: Created by the author.
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Figure 3.  The growth in value of 1£ invested in the FT100 index stockswhere weights are reallocated every six months. 
Source: Created by the author.

Figure 4.  The growth in value of 1€ invested in the EURO STOXX 50 index stocks where weights are reallocated every six 
months. Source: Created by the author.

in a completely random order when optimization 
have been done in different markets using alterna-
tive portfolio optimization strategies.

However, a major challenge is to select the mi-
nimum required or threshold rate of return, to be 
used in the optimization process. This is especially 
evident by looking at the results obtained in the Ger-
man stock market where portfolio returns continued 
to grow even after the threshold rate has exceeded 
the proposed “safe” 1–2 percent range (Figure 5).

The stochastic dominance method proposed for 
picking portfolios again yielded an exceptionally 
good and robust out of sample performance results 
in terms of growth in value of investment. The “SD 
L10-20” strategy have outperformed all of the com-
peting strategies in all tested stock markets, except 
in the FT100 index stock market, where it came in 
the second place. While total net value is arguably 
the most important single ex-post performance in-
dicator, comparing portfolios that have different 
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Table 5.  The performance of the Omega portfolios and benchmark portfolios of the DAX30 index stocks where weights are 
reallocated every six months.

Cum 
RET

Ann 
RET

Ann 
SD

Max 
DD

Avg 
DD

Ann. 
Turn

Tot 
Turn

Gini 
AV

Net 
AnnRet

NetAnn 
SH

Net 
CumRet UPR

EQW 1.997 7.99% 20.17% 59.18% 10.75% 23% 205% 5% 7.76% 0.385 1.957 0.193
C.MV 2.209 9.20% 13.81% 38.29%   7.22% 99% 890% 82% 8.21% 0.595 2.021 0.269
C.TG 2.110 8.65% 18.21% 48.25% 10.59% 142% 1281% 91% 7.23% 0.397 1.858 0.205
LWCC.TG 1.659 5.78% 19.52% 54.16% 12.81% 176% 1580% 90% 4.03% 0.206 1.417 0.124
LWF1 1.895 7.36% 17.58% 50.64% 10.13% 140% 1262% 88% 5.96% 0.339 1.671 0.178
MinCVaR 2.042 8.26% 16.31% 42.53% 8.24% 173% 1554% 89% 6.53% 0.400 1.749 0.189
MaxCVaR 1.795 6.72% 24.54% 54.18% 14.53% 236% 2123% 96% 4.36% 0.178 1.448 0.136
EQRC 2.006 8.04% 17.00% 53.40% 11.51% 31% 276% 25% 7.74% 0.455 1.952 0.209
SD(L0-10) 2.054 8.33% 20.78% 60.49% 12.73% 184% 1656% 91% 6.49% 0.312 1.738 0.667
SD(L10-20) 2.409 10.26% 28.88% 70.02% 13.52% 176% 1584% 92% 8.50% 0.294 2.052 0.587
SD(L20-30) 2.512 10.77% 32.74% 71.31% 16.15% 143% 1289% 93% 9.34% 0.285 2.194 0.612

Source: Created by the author.

Figure 5.  The growth in value of 1€ invested in the DAX30 index stocks where weights are reallocated every six months. 
Source: Created by the author.

risk-return profiles based only on this single indica-
tor may be misleading. The Sharpe ratio shows that, 
strategy “SD L10-20” does no longer yield a signifi-
cantly superior result in all markets. But as the Shar-
pe ratio only considers the first two moments of re-
turns, portfolios characterized by positively skewed 
returns may be misdiagnosed in terms of real perfor-
mance. This proposition is confirmed with the use of 
Upside Potential Ratio (UPR) proposed by Sortino 
et al. (1999). For example, when the UPR measu-
re that captures the asymmetric nature of returns 
was employed the “SD L10-20” strategy again was 
ranked as the best one. As Table 3 indicates it was 

impossible to calculate the UPR ratios for the Ome-
ga optimized portfolios for the shares of the FT100 
list as the UPR formula failed due to zero denomina-
tor, but if we just replace 0 in the denominator with 
some small value the whole function will get large 
and so the strategy will be ranked as the best perfor-
ming one (the UPR ratio is difficult to interpret, so 
it is only used to order the performance of different 
assets anyway).

As indicated by the Gini AV coefficients all port-
folios, except for the EQW and the EQRC portfo-
lios, generally suffer from the drawback of portfolio 
concentration.
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6.  Conclusions

Selection of the investor‘s required rate of return or 
threshold return plays an important role in the port-
folio creation process while using asymmetrical risk 
measures. This study makes several important con-
tributions to the problem area.

Firstly, the results obtained have reaffirmed that 
Omega-optimized portfolios are characterized by 
good performance and stability of the results.

Secondly, the study empirically confirms that zero 
rate or close to the zero rate thresholds, often used 
as investor‘s required rate of return, are not the best 
option.

Finally, and most importantly in this paper it is 
attempted to look at the threshold selection problem 
from a different perspective – empirical research is ai-
med at determining the impact of the threshold return 
on the risk–return characteristics of the investment 
portfolios and selecting the appropriate threshold rate 
by application of the stochastic dominance criteri-
on. Theoretically the stochastic dominance rules are 
appealing as they require less restrictive assumptions 
about the investor’s utility functions and from this 
study it can be concluded that the investment port-
folios selected by stochastic dominance rules may 
produce superior results and eliminate much of gue-
ss-work when selecting the threshold rates.
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